Добро пожаловать,
Гость
|
Не в сети
|
Усилители на биполярных транзисторах.
Усилители на биполярных транзисторах
В усилителях на биполярных транзисторах используется три схемы подключения транзистора: с общей базой (рис. 5.6; 5.9), с общим эмиттером (рис. 5.7; 5.10), с общим коллектором (рис. 5.8; 5.11). На рисунках 5.6-5.8 показаны схемы включения транзисторов с питанием входных и выходных цепей от отдельных источников питания, а на рисунках 5.9-5.11 – с питанием входных и выходных цепей транзистора от одного источника постоянного напряжения. Усилители в схеме включения транзистора с общей базой характеризуются усилением по напряжению, отсутствием усиления по току, малым входным сопротивлением и большим выходным сопротивлением. Усилители в схеме включения транзистора с общим коллектором характеризуются усилением по току, отсутствием усиления по напряжению, большим входным сопротивлением и малым выходным сопротивлением. Наибольшее распространение получила схема включения с общим эмиттером. В схеме включения транзистора с общим эмиттером усилитель обеспечивает усиление по напряжению, по току, по мощности. Такой усилитель имеет средние значения входного и выходного сопротивления по сравнению со схемами включения с общей базой и общим коллектором. Параметры транзистора в значительной степени зависят от температуры. Изменение температуры окружающей среды приводит к изменению рабочего режима транзистора в простой схеме усилителя при включении транзистора с общим эмиттером (рис. 5.2 б). Такая простая схема усилителя используется очень редко. Для стабилизации режима работы транзистора при изменении температуры используют схемы коллекторной (рис. 5.12, 5.13) и эмиттерной (рис. 5.14, 5.15) стабилизации режима работы транзистора. Коллекторная температурная стабилизация режима работы транзистора по схеме рисунка 5.12 используется редко, так как кроме температурной стабилизации происходит уменьшение коэффициента усиления за счет отрицательной обратной связи по переменному току. Устранить отрицательную обратную связь по переменному току позволяет конденсатор С1 в схеме, приведенной на рисунке 5.13. Такая стабилизация используется, например, в антенных усилителях для телевизионного приема. Как в промышленных, так и в радиолюбительских конструкциях широко применяется эмиттерная температурная стабилизация режима работы транзистора. На рисунках 5.14 и 5.15 приведены схемы однокаскадных усилителей на биполярных транзисторах n-p-n и p-n-p типов с эмиттерной температурной стабилизацией режима работы транзистора. Проследим цепи, по которым протекают постоянные токи в усилителе по схеме рисунка 5.14. Постоянный ток делителя напряжения протекает по цепи: плюс источника питания, резисторы R1, R2, минус источника питания. Постоянный ток базы транзистора VT1 протекает по цепи: плюс источника питания, резистор R1, переход база-эмиттер транзистора VT1, резистор Rэ, минус источника питания. Постоянный ток коллектора транзистора VT1 протекает по цепи: плюс источника питания, резистор RК, выводы коллектор-эмиттер транзистора, резистор Rэ, минус источника питания. Биполярный транзистор в составе усилителя работает в режиме, когда переход база-эмиттер смещен в прямом направлении, а переход база-коллектор - в обратном. Поэтому постоянное напряжение на резисторе R2 будет равно сумме напряжения на переходе база-эмиттер транзистора VT1 и напряжения на резисторе Rэ: UR2=Uбэ+URэ. Отсюда следует, что постоянное напряжение на переходе база-эмиттер будет равно Uбэ= UR2 - URэ. Пусть температура окружающей среды увеличивается. В результате этого увеличиваются постоянные токи базы, коллектора и эмиттера, т.е. изменяется рабочая точка транзистора. Ток делителя напряжения на резисторах R1, R2 выбирают значительно больше тока базы транзистора. Поэтому напряжение на резисторе R2 при изменении температуры остается практически неизменным (сопротивление резистора от температуры не зависит), а напряжение на резисторе Rэ с увеличением температуры увеличивается за счет увеличения тока эмиттера при неизменном сопротивлении резистора в цепи эмиттера. В результате этого напряжение база-эмиттер уменьшится, что приведет к уменьшению тока базы, а, следовательно, и силы тока коллектора. Таким образом, рабочая точка транзистора будет стремиться к исходному состоянию. Наличие резистора в цепи эмиттера приводит к появлению отрицательной обратной связи как по постоянному, так и по переменному токам. Для устранения отрицательной обратной связи по переменному току параллельно резистору Rэ подключают конденсатор. Емкость конденсатора Сэ выбирают так, чтобы его сопротивление переменному току на самой низкой частоте усиливаемого сигнала было значительно (примерно в десять раз) меньше сопротивления резистора в цепи эмиттера. В усилителях низкой частоты на биполярных транзисторах применяются разделительные конденсаторы большой емкости. Это, как правило, электролитические конденсаторы, при подключении которых в электрическую цепь необходимо соблюдать полярность. Если источник усиливаемого сигнала не имеет постоянной составляющей и к выходу усилителя подключается нагрузка, не имеющая постоянного напряжения на своих зажимах, то полярность конденсаторов при использовании транзисторов n-р-n типа должна быть такой, как показано на рисунке 5.14, а для транзистора р-n-р типа - на рисунке 5.15 (изменяется полярность включения источника питания и полярность подключения конденсаторов). Емкость разделительного конденсатора (конденсатор на выходе усилительного каскада) выбирают такой, чтобы его сопротивление было много меньше входного сопротивления следующего усилительного каскада, или много меньше сопротивления нагрузки на самой низкой частоте усиливаемого сигнала. В последнее время широко применяются двухкаскадные усилители с непосредственной связью между транзисторами (рис. 5.16). Такие усилители применяются в качестве входных усилителей низкой частоты, в качестве антенных усилителей телевизионного сигнала и др. В этих усилителях обеспечивается температурная стабилизация режима обоих транзисторов. Рассмотрим цепи, по которым протекают постоянные токи. Постоянный ток базы транзистора VT1 протекает по следующим цепям: плюс источника питания, резистор R1, переход база-эмиттер транзистора VT2, резистор R2, переход база-эмиттер транзистора VT1, общий провод, минус источника питания; плюс источника питания, резистор Rк, выводы коллектор-эмиттер транзистора VT2, резистор R2, переход база-эмиттер транзистора VT1, общий провод, минус источника питания. Постоянный ток базы транзистора VT2 протекает по цепи: плюс источника питания, резистор R1, переход база-эмиттер транзистора VT2, резистор Rэ, общий провод, минус источника питания. Постоянный ток коллектора транзистора VT1 протекает по цепи: плюс источника питания, резистор R1, выводы коллектор-эмиттер транзистора VT1, общий провод, минус источника питания. Постоянный ток коллектора транзистора VT2 протекает по цепи: плюс источника питания, резистор Rк, выводы коллектор-эмиттер транзистора VT2, резистор Rэ, общий провод, минус источника питания. При увеличении температуры увеличивается ток базы первого транзистора. Это приведет к увеличению тока коллектора этого транзистора и уменьшению напряжения между коллектором первого транзистора и общим проводом. В результате уменьшится ток базы второго транзистора, что приведет к уменьшению тока коллектора второго транзистора. Напряжение на резисторе Rэ уменьшится, и ток базы первого транзистора будет стремиться к своему первоначальному значению. Входные цепи чувствительного усилителя низкой частоты обязательно выполняются экранированным проводом, причем экран соединяется с корпусом усилителя в одной точке. От выбора этой точки зависит уровень мешающих напряжений. ivatv.narod.ru |
|
Администратор запретил публиковать записи гостям.
|