Добро пожаловать,
Гость
|
Не в сети
|
Корректоры коэффициента мощности от компании STM (с низким стартовым током)
На сегодняшний день существуют два подхода к построению источников питания, дающих на
выходе стабильное выходное напряжение или ток – источники питания с параметрической и с импульсной стабилизацией. В линейных источниках стабилизация выходного параметра осуществляется за счет нелинейного элемента. Импульсные – работают по принципу управления энергией в катушке индуктивности с помощью одного или нескольких коммутирующих ключей. Преимущество первых – низкий уровень высокочастотных шумов, что важно для аналоговой аппаратуры. За импульсными источниками – более высокие мощности и лучшее соотношение мощности и размеров. Кроме того, они имеют более высокий КПД. Вопросы сложности или простоты схемотехники являются весьма спорными, т.к. современная промышленность предлагает широкий спектр решений, в том числе и однокристальных, для любых приложений. Но для сети линейные и импульсные источники питания являются нелинейной нагрузкой – форма потребляемого тока будет отличаться от синусоидальной, что приведет к возникновению дополнительных гармоник, а следовательно – к появлению реактивной составляющей мощности, дополнительному нагреву и потерям в линиях электропередач. Кроме того, другим потребителям энергии приходится применять дополнительные меры для защиты от сетевых помех – особенно в случае импульсных блоков высокой мощности, работающих под нагрузкой. Ограничения на допустимые наводки в сети от работающего прибора регламентируются соответствующими международными и государственными стандартами. Можно не сомневается, что российские стандарты в этой области будут ужесточаться и приближаться к мировым. В итоге именно те компании, которые освоят техники снижения сетевых помех, получат значительное преимущество над конкурентами. Для снижения влияния потребителя тока на сеть применяются активные или пассивные корректоры. Пассивные корректоры представляют собой дроссели, чаще всего применяемые в устройствах небольшой мощности и некритичные к габаритным размерам. В остальных случаях целесообразно применение активных высокочастотных корректоров, часто называемых корректорами коэффициента мощности (ККМ или PFC – Power Factor Correction). К основным задачам ККМ можно отнести: Придание потребляемому от сети току синусоидальной формы (снижение коэффициента гармоник); Ограничение выходной мощности; Защиту от короткого замыкания; Защиту от пониженного или повышенного напряжений. Фактически, ККМ можно рассматривать как некий буферный каскад (схему), снижающий взаимное влияние питающей сети и источника питания. Типовая структура корректора мощности представлена на рисунке 1. Рис. 1. Типовая схема корректора коэффициента мощности ККМ может быть реализован не только на дискретных элементах, но и при помощи специализированных микросхем – контроллеров ККМ (PFC-корректоры). К основным производителям контроллеров корректоров коэффициента мощности относятся: STMicroelectronics- L4981, L656x; Texas Instruments- UCx854, UC28xx; International Rectifier – IR115x; ON Semiconductor- MC3x262, MC33368, NCP165x, NCP160x; Fairchild Semiconductor- FAN48xx, FAN69x, FAN7527; Linear Technology Corporation- LTC1248. ККМ-контроллеры STMicroelectronics Компания STMicroelectronics предлагает несколько серий производительных контроллеров ККМ, способных обеспечить различные режимы работы прибора. Дополнительные опции упрощают построение импульсных источников питания, учитывая стандарты энергосбережения и требования к уровню вносимых в питающую сеть искажений. Таблица 1. Контроллеры корректора коэффициента мощности STMicroelectronics Микросхема Корпус Режим работы Напряжение питания, В Ток потребления, мА активный/стартовый (низкопотребляющий) Примечание L4981 PDIP 20; SO-20 ССМ 19,5 12/0,3 Мягкий старт; защита от перенапряжения, перегрузки по току L6561 DIP-8; SO-8 TM 11…18 4/0,05 Защита от перенапряжения L6562A DIP-8; SO-8 TM, Fixed-Off-Time 10,5…22,5 3,5/0,03 Защита от перенапряжения L6562AT SO-8 TM, Fixed-Off-Time 10,5…22,5 3,5/0,03 Защита от перенапряжения L6563H SO-16 TM, tracking boost 10,3…22,5 5/0,09 Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора L6563S SO-14 TM, tracking boost 10,3…22,5 5/0,09 Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора L6564 SSOP 10 TM, tracking boost 10,3…22,5 5/0,09 Высоковольтный старт; защита от перенапряжения, разрыва обратной связи, насыщения индуктора Микросхема контроллера корректора мощности L4981 позволяет построить высокоэффективные блоки питания с синусоидальным током потребления. Коэффициент мощности может достигать величины 0,99 при низком уровне гармоник. Сама микросхема реализована по технологии BCD 60II и работает по принципу контроля среднего тока (CCM), поддерживая синусоидальность потребляемого тока. L4981 может быть использована в системах с питающими напряжениями 85…265 В без внешнего драйвера силового ключа. Серия «A» для ШИМ-контроллера использует фиксированную частоту; серия «B» для оптимизации входного фильтра дополнительно использует частотную модуляцию. Также в состав микросхемы входят: прецизионный источник опорного напряжения, усилитель рассогласования, схема блокировки работы при критическом падении напряжения, датчик тока, схема мягкого старта и защита от перенапряжения и перегрузки по току. Уровень срабатывания защиты по току для L4981A задается при помощи внешнего резистора; для повышения точности в серии L4981B используется внешний делитель напряжения. Ключевые особенности: Boost-ШИМ с коэффициентом мощности до 0,99; Искажение тока не более 5%; Универсальный вход; Мощный выходной каскад (биполярные и МОП-транзисторы); Защита от просадки напряжения с гистерезисом и программируемым порогом включения; Встроенный источник опорного напряжения с точностью 2% (доступен извне); Низкий ток запуска (~0,3мА); Система мягкого включения. Серия L6561 является улучшенной версией PFC-контроллера L6560 (полностью с ним совместима). Основные новшества: Улучшенный аналоговый умножитель, позволяющий устройству работать в широком диапазоне входных напряжений (от 85 до 265В) с превосходными показателями коэффициента гармоник (THD); Стартовый ток уменьшен до нескольких миллиампер (~4мА); Добавлен вывод разрешения работы, гарантирующий низкое энергопотребление в режиме ожидания (stand by). Ключевые возможности, воплощенные в смешанной технологии BCD: Ультранизкий стартовый ток (~50мкА); 1% встроенный источник опорного напряжения; Программируемая защита от перенапряжения; Токовый датчик без внешнего фильтра низких частот; Малый ток покоя. Выходной каскад способен управлять силовыми МОП- или IGBT-ключами с токами управления до 400 мА. Микросхема работает в переходном режиме работы корректоров коэффициента мощности – Transition Mode (TM) – промежуточный режим между непрерывным (CCM) и прерывистым (DCM). L6561 оптимизирована для балластных схем питания газоразрядных ламп, сетевых адаптеров, импульсных источников питания. Контроллер ККМ L6562A/L6562AT также работает в переходном режиме (TM) и совместим повыводно с предшественниками L6561 и L6562. Его высоколинейный умножитель имеет специальную схему, уменьшающую рассогласование входного переменного тока, что позволяет оперировать в широком диапазоне входных напряжений с низким коэффициентом гармоник при различных нагрузках. Выходное напряжение контролируется операционным усилителем с высокоточным источником опорного напряжения (до 1% точности). L6562A/L6562AT в режиме покоя имеет потребление порядка 60 мкА и рабочий ток всего 5 мА. Наличие входа управления включением/выключением облегчает создание конечных устройств, отвечающих требованиям стандартов Blue Angel, EnergyStar, Energy2000 и ряда других.Эффективная двухуровневая система защиты от перенапряжения срабатывает даже в случае возникновения перегрузки в момент запуска корректора или же в случае отрыва нагрузки при работе. Выходной каскад способен обеспечить выходной ток до 600 мА и входной до 800 мА, что является достаточным для управления мощными силовыми MOSFETs или IGBT-ключами. В дополнение к указанным выше возможностям L6562A может оперировать в проприетарном режиме фиксированного времени выключения (Fixed-Off-Time) – рисунок 2. Рис. 2. Временные диаграммы работы ККМ-контроллера в режиме Fixed-Off-Time Серии ККМ-контроллеров L6563, L6563S, L6563H, L6564 построены по схеме типового корректора коэффициента мощности, работающего в режиме TM с рядом дополнительных возможностей. L6563, L6563S имеют режим работы Tracking boost, двунаправленный вход упреждения напряжения, вход разрешения работы, прецизионный источник опорного напряжения (точность при 25°С в пределах 1…1,5%). Кроме того, в микросхему интегрированы: схемы защиты от перенапряжения с настраиваемым порогом, разрыва контура обратной связи (выключение микросхемы), насыщения индуктора (выключение микросхемы); программируемый детектор критического падения переменного напряжения. Максимальный ток потребления L6563х составляет не более 6 мА в активном режиме, стартовый ток менее 100 мкА. Микросхема контроллера корректора коэффициента мощности L6562A Сферы применения ККМ-контроллера включают в себя: Импульсные блоки питания, отвечающие требованиям стандартов IEC61000-3-2 (телевизоры, мониторы, компьютеры, игровые консоли); AC/DC-преобразователи/зарядные устройства с мощностью до 400 Вт; Электронный балласт; Входной уровень серверов и веб-серверов. Ключевыми особенностями L6562A являются: Проприетарное решение умножителя; Настраиваемые уровни защиты от перенапряжения; Ультранизкий стартовый ток- 30мкА; Низкий ток покоя- 2,5мА; Мощный выходной каскад для управления силовыми ключами- -600,800мА. Микросхемы выпускаются в компактных восьмивыводных корпусах DIP-8 и SO-8. Структурная схема L6562A показана на рисунке 3. Рис. 3. Структурная схема ККМ-контроллера L6562A Инверсный вход усилителя ошибки разделяет функции вывода разрешения работы микросхемы. При напряжении на нем ниже 0,2 В он выключает микросхему, тем самым понижая ее энергопотребление, а при превышении порога в 0,45 В микросхема переходит в активный режим. Основное назначение данной функции – управление ККМ-контроллером, например, он может управляться следующим за ним ШИМ-контроллером преобразователя напряжения. Дополнительной возможностью, предоставляемой функцией выключения, является автоматическое отключение в случае замыкания на землю напряжения низкоомного резистора выходного делителя или обрыва цепи делителя. Выходной сигнал усилителя ошибки поступает на его инверсный вход через компенсирующие цепи обратной связи. Фактически, работа данных цепей определяет стабильность выходного напряжения, высокий коэффициент мощности и низкий уровень гармоник. После выпрямителя основное питающее напряжение поступает на вход умножителя через делитель напряжения и служит источником опорного синусоидального сигнала для токовой петли. Напряжение с измерительного резистора в цепи силового ключа поступает на вход компаратора ШИМ, где сравнивается с опорным синусоидальным сигналом для определения момента размыкания ключа. Для снижения влияния импульсных помех аппаратно реализована задержка в 200 нс от фронта импульса. По отрицательному фронту импульса размагничивания индуктора происходит замыкание силового ключа. Примером схемы включения L6562A может служить повышающий источник напряжения на 400 В (рисунок 4). Рис. 4. Принципиальная электрическая схема широкодиапазонного сетевого источника питания (оценочная плата EVL6562A-TM-80W) Вторым примером может служить применение L6562A в составе источника питания для светодиодных светильников (рисунок 5). Рис. 5. Структурная схема источника питания для светодиодных светильников (отладочная плата EVL6562A-LED) L6562A имеет специализированную схему, снижающую влияние переходных процессов в районе нулевого переменного входного напряжения, когда диоды в выпрямительном мосту еще закрыты, и ток через мост равен нулю. Для борьбы с данным эффектом встроенная схема заставляет ККМконтроллер перекачивать больше энергии в момент пересечения нуля сетевым напряжением (увеличивается промежуток времени нахождения силового ключа в открытом состоянии). В результате уменьшается промежуток времени, в течение которого потребление энергии (тока) схемой недостаточно, и полностью разряжается фильтрующий конденсатор, стоящий после моста. Низкое значение опорного напряжения позволяет использовать более низкоомный резистор для измерения тока в цепи силового ключа, соответственно снижается и рассеиваемая на нем мощность (меньше рассеиваемой мощности ® меньше нагрев ® ниже требования к системе охлаждения и вентиляции). Низкие входные токи динамической защиты от перенапряжения допускают применение высокоомного верхнего резистора в делителе напряжения цепи обратной связи по напряжению без увеличения влияния шума. В итоге снижается ток потребления схемы в режиме ожидания (важно в связи с требованиями стандартов энергосбережения). В таблице 2 приведены основные параметры ККМ-контроллера L6562A. ККМ-контроллеры STMicroelectronics серий L6563S/HПомимо стандартных функций и возможностей контроллеры коэффициента мощности серии L6563S/H (рис. 6) имеют ряд опций, улучшающих характеристики конечных устройств, работающих на их основе. Рис. 6. Структурная схема ККМ-контроллера L6563S Среди отличительных особенностей: Возможность работы в режиме tracking boost; 1/V2-коррекция; Защита от перенапряжения, разрыва цепи обратной связи, насыщения индуктора. Высоколинейный умножитель с коррекцией ступенчатых искажений основного тока позволяет микросхемам работать в широком диапазоне входного переменного напряжения при минимальном уровне нелинейных искажений даже при больших нагрузках.Выходное напряжение контролируется усилителем ошибки и прецизионным источником напряжения (1% при 25°С). Стабильность контура обратной связи отслеживается упреждающей связью по напряжению (1/V2-коррекция), которая в данной микросхеме использует уникальную проприетарную технику, позволяющую существенно улучшить переходные процессы на линии при падениях или скачках сетевого напряжения (т.н. двунаправленная связь – «bidirectional»). ККМ-контроллер L6563H имеет тот же набор функций, что и L6563/L6563S, с добавлением высоковольтного источника запуска. Эта возможность востребована в приложениях с жесткими требованиями по энергосбережению, а также в тех случаях, когда контроллер ККМ работает в режиме мастера. Дополнительно L6563H имеет возможность работы в режиме отслеживания повышения (tracking boost operation) – выходное напряжение изменяется, реагируя на изменения сетевого напряжения. L6563H может быть использован в составе блоков питания мощностью до 400 Вт при соответствии требованиям стандартов EN61000-3-2, JEITA-MITI. Микросхема L6564 является более компактной версией L6563S в корпусе SSOP-10 – имеет тот же драйвер, источник опорного напряжения и систему управления. В серии L6563A отсутствует защита от насыщения индуктора. Так же, как и L6562A, ККМ-контроллеры L6263x могут работать в режиме фиксированного времени выключения (Fixed-Off-Time). Кроме того, выводы состояния контроллера позволяют управлять ШИМ-контроллером DC/DC-преобразователя, питаемого предварительным регулятором ККМконтроллера при нештатных ситуациях (разрыв обратной связи, насыщение индуктора, перегрузка). С другой стороны, возможно отключение ККМ-контроллера в том случае, если DC/DCконвертор работает на малую нагрузку. В отличие от серий L6562x имеются отдельные входы управления контроллером, что делает управление достаточно гибким. Рекомендации по выбору компонентов для ККМ-контроллера Для корректной работы микросхем ККМ-контроллеров, стабильной работы прибора и его соответствия требованиям стандартов необходимо выбрать подходящий режим работы. Как правило, для мощностей меньше 200 Вт ККМ-контроллеры L6562A/3S/3H/4 включаются в режиме TM. Для приборов, оперирующих мощностями более 200 Вт, применяется микросхема L4981 (ее режим работы CCM). Возможно также применение серий L6562A/3S/3H/4 в режимах Fixed-Off-Time или Reeple-Steering. Силовой MOSFET-ключ и выпрямительный диод для силовой части корректора мощности или источника питания можно легко выбрать из продукции STMicroelectronics.Для устройств малой мощности (до 100 Вт) подходят силовые ключи семейства SuperMesh3, например, серии STx10N62K3. Для средней мощности (100…1000 Вт) – семейство MDMesh2 серии STx25NM50M. И для мощных источников, работающих с мощностями более 1 кВт – семейство MDMesh5 серии STP42N65M5. В качестве выпрямительных рекомендуются: диоды на карбиде кремния, обладающие наименьшей емкостью перехода (серии STPSCxx06); диоды семейства Turbo 2, например, STTHxxR06; а также тандемные диоды серии STTH806DTI. Александр Калачев (г. Барнаул) |
|
Администратор запретил публиковать записи гостям.
|